A method for human action recognition
نویسندگان
چکیده
This article deals with the problem of classification of human activities from video. Our approach uses motion features that are computed very efficiently, and subsequently projected into a lower dimensional space where matching is performed. Each action is represented as a manifold in this lower dimensional space and matching is done by comparing these manifolds. To demonstrate the effectiveness of this approach, it was used on a large data set of similar actions, each performed by many different actors. Classification results were very accurate and show that this approach is robust to challenges such as variations in performers’ physical attributes, color of clothing, and style of motion. An important result of this article is that the recovery of the three-dimensional properties of a moving person, or even the two-dimensional tracking of the person’s limbs need not precede action recognition. q 2003 Elsevier Science B.V. All rights reserved.
منابع مشابه
Action Change Detection in Video Based on HOG
Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...
متن کاملSupporting of penal rights for infants and observance an medical ethics
Introduction: Infants have a high station in our society and to support an immune life for them in parents, governmental institutions and NGOs. Purpose of this essay is good using of ethic of doctor for getting to mentioned aim. Method: A head text is written with descriptive and analytic method. Results: one of the fundamental missions of penal right is supporting of value as life right that...
متن کاملEffect of sound classification by neural networks in the recognition of human hearing
In this paper, we focus on two basic issues: (a) the classification of sound by neural networks based on frequency and sound intensity parameters (b) evaluating the health of different human ears as compared to of those a healthy person. Sound classification by a specific feed forward neural network with two inputs as frequency and sound intensity and two hidden layers is proposed. This process...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملP-146: The Holy Quran, Genetic Gender Determination and Recognition, and Divine Knowledge and Creativeness
Background: Determining the genetic gender has been a human's inaccessible will during the history. Today science resolves the problem; pre implantation diagnosis (PGD) is used as a method of genetic disease diagnosis and gender determination. The holy Quran in many verses ascribes genetic gender determination and recognition to Allah, the Almighty. Hence, according to some, genetic gender...
متن کاملRecognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model
Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Image Vision Comput.
دوره 21 شماره
صفحات -
تاریخ انتشار 2003